

Hydra.Python — Python bindings for the Hydra C++ library

	About this project

The basics

	First steps
	Quick start

	Creating a simple Lorentz vector and calculating the particle’s mass

	Vector Classes
	Vector4R

	Vector3R

	Events Class
	Host

	Device

	PhaseSpace Class

	Random Class

Examples

	Phase Space Example

About this project

The Hydra.Python package provides the Python bindings for the header-only C++ Hydra [https://github.com/MultithreadCorner/Hydra] library.
This library is an abstraction over the C++ library, so that daily work can be coded and run with the Python language,
concentrating on the logic and leaving all the complex memory management and optimisations to the C++ library.

The bindings are produced with pybind11 [http://pybind11.readthedocs.io/]. The project makes use of CMAKE [https://cmake.org/] for what concerns the building of the Hydra.Python library.

The library is written with Linux systems in mind, but compatibility with other platforms may be achieved with “hacks”.
Python versions 2.7, and 3.x are supported.

Core features

The core functionality of Hydra has been exposed to Python.
The following core C++ features of Hydra can be mapped to Python:

	The continuous expansion of the original Hydra library.

	Support for particles with Vector4R class.

	Support for containers like Events or Decay.

Supported compilers

	Clang/LLVM (any non-ancient version with C++11 support).

	GCC 4.8 or newer.

History

The development of Hydra.Python started as a
2017 Google Summer of Code project (GSoC [https://summerofcode.withgoogle.com/projects/#6669304945704960]) with student Deepanshu Thakur [https://github.com/Deepanshu2017].

First steps

This section demonstrates the basic features of HydraPython. Before getting
started, make sure that the development environment is set up to compile the
included set of test cases.

Quick start

On Linux you’ll need the Hydra [https://github.com/MultithreadCorner/Hydra] and Pybind11 [https://github.com/pybind/pybind11.git] projects as well as cmake to build. The python-dev or python3-dev package is required too.
You can clone
and fetch the latest code for both of the mentioned libraries. Then you could
create a directory structure similar to below one.

Project root -
 - Hydra.Python (latest code of Hydra Python)
 - Hydra (latest code of Hydra)
 - Pybind11 (latest code of Pybind11)
 - build (build directory)

After downloading the prerequisites, run

cd build
cmake -DHYDRA_INSTALL_PATH=../Hydra -DPYBIND11_INSTALL_PATH=../pybind11/include -DTHRUST_INSTALL_PATH=../Hydra ../Hydra.Python
make all

The last line will both compile and create a shared .so file which is the library imported in python.

The best way to check if the installation is correct or not is to run the test
cases provided in the Hydra.Python/tests/ directory.

Creating a simple Lorentz vector and calculating the particle’s mass

Let’s start by importing the module:

import HydraPython as hp

The name HydraPython is quite long so generally, we use its alias as hp.

Now that we have already imported the module let’s just simply create the particle Lorentz vector, i.e. the Vector4R instance.

import HydraPython as hp
vec4 = hp.Vector4R()
print(vec4) # (0, 0, 0, 0)

So this is it. We’ve just created a Vector4R object represending the 4-momentum vector of a particle.
This matter is important when the PhaseSpace class will be used to generate Events with N particles.

The next 3 pages explain the Vector classes (Vector4R and Vector3R), the Events
classes and the PhaseSpace class in more detail.

Vector Classes

There are two vector classes available in Hydra, namely Vector4R and Vector3R.

Vector4R

The Vector4R class available in Python wraps the C++ Vector4R class representing
four-dimensional relativistic vectors.
Three types of constructors allow to instantiate the Vector4R class:

	Default empty constructor.

	Copy constructor.

	Constructor from 4 real (float) numbers.

import HydraPython as hp

vec1 = hp.Vector4R() # construction with values 0.0 for all 4 particals
vec2 = hp.Vector4R(0.8385, 0.1242, 0.9821, 1.2424)
vec3 = hp.Vector4R(vec2) # Copy construct the vec3 from vec2

print (vec1) # (0, 0, 0, 0)
print (vec2) # (0.8385,0.1242,0.9821,1.2424)
print (vec3) # (0.8385,0.1242,0.9821,1.2424)

The Vector4R class also provides a pretty convenient method to create an instance from a python list.

list_ = [0.9241, 0.13223, 0.13121, 1.1141]
vec4 = hp.Vector4R(list_)

This will construct a new Vector4R object with the values passed within
a list. The list should contain exactly 4 elements otherwise a TypeError
will be raised.
The set methods can be used to set all 4 values or a particular value
in a Vector4R object, while the get method can be used with Vector4R
to get the value of a particular index. The __getitem__ and
__setitem methods can also be used to get or set the value which comes
very handy and maintain more pythonic way to access and set the values.

vec5 = hp.Vector4R(0.8385, 0.1242, 0.9821, 1.2424)
print (vec5) # (0.8385,0.1242,0.9821,1.2424)

vec5.set(0, 0.9887)
print (vec5) # (0.9887,0.1242,0.9821,1.2424)

vec5.set(0.1234, 0.5118, 0.9101, 0.1121)
print (vec5) # (0.1234,0.5118,0.9101,0.1121)

print (vec5[1]) # 0.5118
print (vec5.get(1)) # 0.5118
vec5[1] = 0.5678
print (vec5) # (0.1234,0.5678,0.9101,0.1121)

The Vector4R object can be multiplied or divided by a real value while it
can be added or subtracted with another Vector4R object. One Vector4R
object can be multiplied by another Vector4R object.

vec6 = hp.Vector4R(0.8215, 0.9241, 0.0105, 1.1994)
vec6 *= 1.1
print (vec6) # (0.90365,1.01651,0.01155,1.31934)
vec6 /= 0.6
print (vec6) # (1.50608,1.69418,0.01925,2.1989)

vec7 = hp.Vector4R(0.1223, 0.6433, 0.1234, 0.3010)
vec6 += vec7 # Add vec6 with the values of vec7
print (vec6) # (1.62838,2.33748,0.14265,2.4999)

vec6 -= vec7
print (vec6) # (1.50608,1.69418,0.01925,2.1989)

Two Vector4R objects can easily be added, subtracted or multiplied:

	v = v1 + v2 # Returns a Vector4R object

	v = v1 - v2 # Returns a Vector4R object

	v = v1 * v2 # Returns a real number

All above three are valid for any Vector4R object. There are various
other methods available in Vector4R. The list of Vector4R
methods can be found on [1].

The Vector4R provides an assign method to assign or copy the Vector4R
object. This is a very useful method to avoid the nasty bugs for example:

vec = hp.Vector4R(0.2010, 0.3010, 0.0210, 0.8385)
vec2 = hp.Vector4R()

Do things and later in code ...
vec2.assign(vec)
vec == vec2 # True since all values are equal
vec is vec2 # False

vec = vec2 # Reference is copied
vec == vec2 # True
vec is vec2 # True

Vector3R

The Vector43 class available in Python wraps the C++ Vector3R class representing
three-dimensional Euclidian vectors.
Three types of constructors allow to instantiate the Vector3R class:

	Default empty constructor.

	Copy constructor.

	Constructor from 3 real (float) numbers.

import HydraPython as hp

vec1 = hp.Vector3R() # construction with values 0.0 for all 3 particals
vec2 = hp.Vector3R(0.8385, 0.1242, 0.9821)
vec3 = hp.Vector3R(vec2) # Copy construct the vec3 from vec2

print (vec1) # (0,0,0)
print (vec2) # (0.8385,0.1242,0.9821)
print (vec3) # (0.8385,0.1242,0.9821)

The Vector3R class also provides a pretty convenient method to create an
object from python list.

list_ = [0.9241, 0.13223, 0.13121]
vec4 = hp.Vector3R(list_)

This will construct a new Vector3R object with the values passed within
a list. The list should contain exactly 3 elements otherwise a TypeError
will be raised.
The set methods can be used to set all 3 values or a particular value
in a Vector3R object, while the get method can be used with Vector3R
to get the value of a particular index. The __getitem__ and
__setitem methods can also be used to get or set the value which comes
very handy and maintain more pythonic way to access and set the values.

vec5 = hp.Vector3R(0.8385, 0.1242, 0.9821)
print (vec5) # (0.8385,0.1242,0.9821)

vec5.set(0, 0.9887)
print (vec5) # (0.9887,0.1242,0.9821)

vec5.set(0.1234, 0.5118, 0.9101)
print (vec5) # (0.1234,0.5118,0.9101)

print (vec5[1]) # 0.5118
print (vec5.get(1)) # 0.5118
vec5[1] = 0.5678
print (vec5) # (0.1234,0.5678,0.9101)

The Vector3R object can be multiplied or divided by a real value while it
can be added or subtracted with another Vector3R object. One Vector3R
object can be multiplied by another Vector3R object.

vec6 = hp.Vector3R(0.8215, 0.9241, 0.0105)
vec6 *= 1.1
print (vec6) # (0.90365,1.01651,0.01155)
vec6 /= 0.6
print (vec6) # (1.50608,1.69418,0.01925)

vec7 = hp.Vector3R(0.1223, 0.6433, 0.1234)
vec6 += vec7 # Add vec6 with the values of vec7
print (vec6) # (1.62838,2.33748,0.14265)

vec6 -= vec7
print (vec6) # (1.50608,1.69418,0.01925)

Two Vector3R objects can easily be added, subtracted or multiplied:

	v = v1 + v2 # Returns a Vector3R object

	v = v1 - v2 # Returns a Vector3R object

	v = v1 * v2 # Returns a real number

All above three are valid for any Vector3R object. There are various
other methods available in Vector3R. The list of Vector3R
methods can be found on [2].

The Vector3R provides an assign method to assign or copy the Vector3R
object. This is a very useful method to avoid the nasty bugs for example:

vec = hp.Vector3R(0.2010, 0.3010, 0.0210)
vec2 = hp.Vector3R()

Do things and later in code ...
vec2.assign(vec)
vec == vec2 # True since all values are equal
vec is vec2 # False

vec = vec2 # Reference is copied
vec == vec2 # True
vec is vec2 # True

	[1]	The method list for Vector4R

	set Set the value at an index or all 4 values of Vector4R. Syntax:

	vec1.set(idx, float)

	vec1.set(float, float, float, float)

	get Get the value at an index for a Vector4R. Syntax:

	vec1.get(idx)

	assign Assigns one Vector4R content to other Vector4R. Syntax:

	vec1.assign(vec2)

	cont Finds the cont of the Vector4R object. Syntax:

	result = vec1.cont(vec2)

	mass Returns the mass of the Vector4R object. Syntax:

	result = vec1.mass()

	mass2 Returns the mass2 of the Vector4R object. Syntax:

	result = vec1.mass()

	applyRotateEuler Apply the rotate Eular on given Vector4R object. Syntax:

	vec1.applyRotateEuler(float, float, float)

	applyBoostTo Apply the boost on the given Vector4R object. Syntax:

	vec1.applyBoostTo(vec2, bool)

	vec1.applyBoostTo(Vector3R, bool) # Pay attention to Vector3R object

	vec1.applyBoostTo(float, float, float, bool)

	cross Returns the cross product of two Vector4R. Syntax:

	result_vector = vec1.cross(vec2)

	dot Returns the dot product of two Vector4R. Syntax:

	result = vec1.dot(vec2)

	d3mag Returns the d3mag for two Vector4R. Syntax:

	result = vec1.d3mag()

	dotr3 Returns the dot product of three Vector4R. Syntax:

	result = vec1.dotr3(vec2, vec3)

	mag2r3 Returns the mag2r3 of two Vector4R. Syntax:

	result = vec1.mag2r3(vec2)

	magr3 Returns the magr3 of two Vector4R. Syntax:

	result_vector = vec1.magr3(vec2)

	[2]	The method list for Vector3R

	set Set the value at an index or all 3 values of Vector3R. Syntax:

	vec1.set(idx, float)

	vec1.set(float, float, float)

	get Get the value at an index for a Vector3R. Syntax:

	vec1.get(idx)

	assign Assigns one Vector4R content to other Vector3R. Syntax:

	vec1.assign(vec2)

	dot Returns the dot product of two Vector3R. Syntax:

	result = vec1.dot(vec2)

	d3mag Returns the d3mag for two Vector3R. Syntax:

	result = vec1.d3mag()

Events Class

The Event class is a container class that holds the information corresponding to generated events.
The Event class will not store the mother particle and store the N particle tuples with the
element 0 storing the weight and rest of the elements storing the Vector4R of each particle.
There are two types of Events one that runs on host and device. Events
container currently supports up to (N=10) particles in final state with any number of Events.
Both Host and Device Event classes add number (1 to 10) as their
suffix to create Event for that number of particles and the type
(host or device) is added as their prefix.

Host

The host is generally defined as the CPU. This class is a wrapper of C++
Events class that will work on CPU. This class is a container to hold
the position of particles. We have 4 types of constructors
to instantiate the Events class:

	Default empty constructor

	Constructor with number of events

	Copy constructor (from host to host)

	Copy constructor (from device to host)

import HydraPython as hp

h_events_5 = hp.host_events_5() # construct host Event with 5 particles and 0 Events
print (h_events_5.size()) # 0

h_events_7_100 = hp.host_events_7(100)
print (h_events_7_100.size()) # 100

The host_events_N object can be copy constructed with the host_events_N
or device_events_N object.

import HydraPython as hp
h_events_3 = hp.host_events_3(4)
print (list(h_events_3.Flags())) # [False, False, False, False]

h_events_3.setFlag(1, True)
h_events_3_copy = hp.host_events_3(h_events_3)
print(list(h_events_3_copy.Flags())) # [False, True, False, False]

The setFlags method as demonstrated above can be used to set the
particular Flag value and the getFlag method can be used the get the
particular flag value with the index.

h_event = hp.host_events_5(8)
h_event.setFlag(1, True)
print (h_event.getFlag(1)) # True

The host Events class provides an assign method to assign or copy the Events
object. This is a very useful method to avoid the nasty bugs for example:

h_event = hp.host_events_5(10)
h_event2 = hp.host_events_5()

Do things and later in the code ...
h_event2.assign(h_event)
This will create the exact same copy of the h_event in h_event2

The host Events class also provides a method to set the Maximum weight of the
Events. The method is useful to set the maximum weight. The complete list of the classes
in the Events container can be found on [1]. The complete method
list provided by the Event classes can be found on [2].

The Events classes also provide a pythonic way to access the events with the
[] operator. For example, an event value can be access like this.

event = hp.host_events_5(5)
print(event[1]) # (0.0, (0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0))

Device

The device is defined as the GPU and any other multicore CPU. The device Event
class is exactly similar to the Host Events class but the only major difference
is HOST Events class work on the single CPU while the DEVICE Events class work
on the multiple CPUs or the GPU devices.

In HydraPython the device Events classes support all the method defined by
the host Event classes. The device Event class have device as their prefix
and the number of particle N (up to 10) as their suffix.

It is only the fact that all the methods that can be used with the host can
also be used with the device classes, even the name of the methods are same,
just the declaration of the objects is different. So if you want to create a
device object of particle 7 you will do something like this,

import HydraPython
device_event_with_7_particle = HydraPython.device_events_7()

This will create a device Events with 0 states and 7 particles.

	[1]	The list of Events classes

	host_events_1 Generate 1 particle Event. Syntax:

	h_event = hp.host_events_1(entries)

	host_events_2 Generate 2 particle Event. Syntax:

	h_event = hp.host_events_2(entries)

	host_events_3 Generate 3 particle Event. Syntax:

	h_event = hp.host_events_3(entries)

	host_events_4 Generate 4 particle Event. Syntax:

	h_event = hp.host_events_4(entries)

	host_events_5 Generate 5 particle Event. Syntax:

	h_event = hp.host_events_5(entries)

	host_events_6 Generate 6 particle Event. Syntax:

	h_event = hp.host_events_6(entries)

	host_events_7 Generate 7 particle Event. Syntax:

	h_event = hp.host_events_7(entries)

	host_events_8 Generate 8 particle Event. Syntax:

	h_event = hp.host_events_8(entries)

	host_events_9 Generate 9 particle Event. Syntax:

	h_event = hp.host_events_9(entries)

	host_events_10 Generate 10 particle Event. Syntax:

	h_event = hp.host_events_10(entries)

	device_events_1 Generate 1 particle Event. Syntax:

	d_event = hp.device_events_1(entries)

	device_events_2 Generate 2 particle Event. Syntax:

	d_event = hp.device_events_2(entries)

	device_events_3 Generate 3 particle Event. Syntax:

	d_event = hp.device_events_3(entries)

	device_events_4 Generate 4 particle Event. Syntax:

	d_event = hp.device_events_4(entries)

	device_events_5 Generate 5 particle Event. Syntax:

	d_event = hp.device_events_5(entries)

	device_events_6 Generate 6 particle Event. Syntax:

	d_event = hp.device_events_6(entries)

	device_events_7 Generate 7 particle Event. Syntax:

	d_event = hp.device_events_7(entries)

	device_events_8 Generate 8 particle Event. Syntax:

	d_event = hp.device_events_8(entries)

	device_events_9 Generate 9 particle Event. Syntax:

	d_event = hp.device_events_9(entries)

	device_events_10 Generate 10 particle Event. Syntax:

	d_event = hp.device_events_10(entries)

	[2]	The method list for Events classes

	assign Assigns one Events content to other Events. Syntax:

	event2.assign(event1) # event1’s content will be assigned to event2.

	event2_device.assign(event1_host) # event1_host’s (which is a host event) content will be assigned to event2_device (which is a device event)

	event2_host.assign(event1_device) # event1_device’s (which is a device event) content will be assigned to event2_host (which is a host event)

	event2_device.assign(event1_device) # event1_device’s (which is a device event) content will be assigned to event2_device (which is also a device event)

	event2_host.assign(event1_host) # event1_host’s (which is a host event) content will be assigned to event2_host (which is also a host event)

	GetMaxWeight Gets the maximum weight of the Event’s container. Syntax:

	event.GetMaxWeight()

	event_host.GetMaxWeight() # Get’s the maximum weight of the host Event’s container.

	event_device.GetMaxWeight() # Get’s the maximum weight of the device Event’s container.

	GetNEvents Gets the number of events. Syntax:

	event.GetNEvents()

	event_host.GetNEvents() # Get’s the number of events in host Event’s container.

	event_device.GetNEvents() # Get’s the number of events in device Event’s container.

	Flags This method returns the iterator of flags. Syntax:

	iterator = event.Flags() # event can be of the host or device type and then can be used to iterator over the values.
For example for flag in iterator: print(flag)

	Weights This method returns the iterator of weights. Syntax:

	iterator = event.Weights() # event can be of the host or device type and then can be used to iterator over the values.
For example for weight in iterator: print(weight)

	Daughters This method returns the iterator of daughters at given index (index <= number of the particle). Syntax:

	iterator = event.Daughters(i) # event can be of the host or device type and then can be used to iterator over the values.
For example for daughter in iterator: print(daughter) Will print out the ith particle state in all the events.

	getDaughters This method returns the daughter particles at given index.

	vector_float4 = event.getDaughters(i)

	Events This method returns the iterator of events. Syntax:

	iterator = event.Events() # event can be of the host or device type and then can be used to iterator over the values.
For example for e in iterator: print(e) Will print out all the events where each event will have the N daughters and the weight of the event.

	SetMaxWeight Sets the maximum weight of the events. Syntax:

	event.SetMaxWeight(float) # Sets the maximum weight of the events.

	resize resize the number of events. Syntax:

	event.resize(knumber) # Sets the events container to hold knumber of events.

	size Gets the size or the number of events in the container. Syntax:

	event.size() # Return the total number of events.

	unweight Unweight the events with the given seed. Syntax:

	events.unweight(seed)

	setFlag Set the particular flag with given value. Syntax:

	event.setFlag(idx, bool)

	getFlag Gets the particular flag value. Syntax:

	events.getFlag(idx)

	setWeight Set the particular event’s weight given value. Syntax:

	event.setWeight(idx, float)

	getWeight Gets the particular event’s weight. Syntax:

	event.getWeight(idx)

PhaseSpace Class

This class implements the phase-space Monte Carlo event generation where N is the number
of particles in the final state. Currently PhaseSpace class supports up-to
N=10 number of particles in the Final state. Most of the PhaseSpace class
methods can work on both HOST and DEVICE. The number of particles is
associated with suffix with the class name.

This class is the wrapper for the C++ PhaseSpace class. The PhaseSpace class contains one constructor
to instantiate it:

	Constructor with N number of daughter masses.

import HydraPython as hypy

p = hypy.PhaseSpace4([3.096916, 0.493677, 0.13957018, 0.0195018])
This will construct the PhaseSpace object with the 4 daughter masses in the list.

The PhaseSpace classes provides a method to generate a phase-space decay given an output range
or a phase-space given a range of mother particles and an output range.

The below example generates and fills 3 states of 4 particle host events
vec4 = hypy.Vector4R(5.2795, 0.0, 0.0, 0.0)
ps = hypy.PhaseSpace4([3.096916, 0.493677, 0.13957018, 0.0195018])
e_host = hypy.host_events_4(3)
e_device = hypy.device_events_4(3)
ps.GenerateOnhost(vec4, e_host) # Generate particle on host
ps.GenerateOndevice(vec4, e_device) # Generate particle on device

B0_mass = 5.27955
B0 = hypy.Vector4R(B0_mass, 0.0, 0.0, 0.0)

mothers = hypy.host_vector_float4(5)
Fill mother with some particles
mothers[0] = (3.326536152819228, -0.7376241292510032, 0.9527533342879685, 0.15239715864543849)
mothers[1] = (3.3327060111834546, -0.44741166640978447, 1.012640505284964, -0.5390007001803998)
mothers[2] = (3.4673036097962844, 0.6781637974979919, -1.4020213115136253, -0.0763859825560801)
mothers[3] = (3.5042443315560945, 1.5383404921780213, -0.1442073504412384, -0.5492280905481964)
mothers[4] = (3.4406218104833015, -0.16339927010014546, 1.363729549941791, 0.6005257912194031)

phsp2 = hypy.PhaseSpace2([0.1056583745, 0.1056583745])
grand_daughter = hypy.host_events_2(5)
phsp2.GenerateOnhost(mothers, grand_daughter)

for i in grand_daughter: print(i)

The AverageOnhost and AverageOndevice method by PhaseSpace classes calculate the
mean and sqrt(variance) of a functor over the phase-space with n-samples or
of a functor over the phase-space given a list of mother particles.

import HydraPython as hypy
import math
def foo(*data):
 p1, p2, p3 = data[0], data[1], data[2]
 p = p1 + p2 + p3
 q = p2 + p3
 pd = p * p2
 pq = p * q
 qd = q * p2
 mp2 = p.mass2()
 mq2 = q.mass2()
 md2 = p2.mass2()
 return (pd * mq2 - pq * qd) / math.sqrt((pq * pq - mq2 * mp2) * (qd * qd - mq2 * md2))

vec4 = hypy.Vector4R(5.2795, 0.0, 0.0, 0.0)
p = hypy.PhaseSpace4([3.096916, 0.493677, 0.13957018, 0.0195018])
tup = p.AverageOnhost(vec4, foo, 10) # Average of host, currently passing functor to device will fail
print (tup[0]) # Mean
print (tup[1]) # sqrt of variance

Like generators, the AverageOn method also can accept the list of mother particle instead of one mother particle
and calculate the mean and sqrt(variance).

The EvaluateOnhost and EvaluateOndevice evaluates a functor over the passed one mother particle or the list
of mother particles.

The complete list of class implementations can be found at [1] and the complete list of methods supported
can be found at [2].

	[1]	The list of PhaseSpace classe implementations

	PhaseSpace2 Generate the phase-space with 2 particles. Syntax:

	p = hypy.PhaseSpace2([2 daughter masses])

	PhaseSpace3 Generate the phase-space with 3 particles. Syntax:

	p = hypy.PhaseSpace3([3 daughter masses])

	PhaseSpace4 Generate the phase-space with 4 particles. Syntax:

	p = hypy.PhaseSpace4([4 daughter masses])

	PhaseSpace5 Generate the phase-space with 5 particles. Syntax:

	p = hypy.PhaseSpace5([5 daughter masses])

	PhaseSpace6 Generate the phase-space with 6 particles. Syntax:

	p = hypy.PhaseSpace6([6 daughter masses])

	PhaseSpace7 Generate the phase-space with 7 particles. Syntax:

	p = hypy.PhaseSpace7([7 daughter masses])

	PhaseSpace8 Generate the phase-space with 8 particles. Syntax:

	p = hypy.PhaseSpace8([8 daughter masses])

	PhaseSpace9 Generate the phase-space with 9 particles. Syntax:

	p = hypy.PhaseSpace9([9 daughter masses])

	PhaseSpace10 Generate the phase-space with 10 particles. Syntax:

	p = hypy.PhaseSpace10([10 daughter masses])

	[2]	The list of methods for the PhaseSpace classes

	GetSeed Get the seed. Syntax:

	p.GetSeed()

	SetSeed Set seed. Syntax:

	p.SetSeed(seed)

	GenerateOnhost Generate the phase-space. Syntax:

	p.GenerateOnhost(vector4R, event)

	p.GenerateOnhost(hypy.host_vector_float4& mothers, event)

	GenerateOndevice Generate the phase-space. Syntax:

	p.GenerateOndevice(vector4R, event)

	p.GenerateOndevice(hypy.device_vector_float4& mothers, event)

	AverageOnhost Get the mean and sqrt of variance. Syntax:

	p.AverageOnhost(vector4R, functor, number_of_entires)

	p.AverageOnhost(hypy.host_vector_float4& mothers, functor)

	AverageOndevice Get the mean and sqrt of variance. Syntax:

	AverageOndevice Get the mean and sqrt of variance. Syntax:

	p.AverageOndevice(vector4R, functor, number_of_entires)

	p.AverageOndevice(hypy.device_vector_float4& mothers, functor)

	EvaluateOnhost Evaluate a function over the given particle or list of particles:

	p.EvaluateOnhost(vector4R, hypy.host_vector_float2& result, functor)

	p.EvaluateOnhost(hypy.host_vector_float4& mothers, hypy.host_vector_float2& result, functor)

	EvaluateOndevice Evaluate a function over the given particle or list of particles:

	p.EvaluateOndevice(vector4R, hypy.device_vector_float2& result, functor)

	p.EvaluateOndevice(hypy.device_vector_float4& mothers, hypy.device_vector_float2& result, functor)

Random Class

This class implements functionalities associated with random number generation
and pdf sampling. This class can sample and fill ranges with data corresponding
to Gaussian, Exponential, Uniform and Breit-Wigner distributions.

This class is a wrapper of hydra C++ Random class. The Random class have
two constructors to instantiate the Random class:

	Constructor with empty seed. The default seed value is 7895123.

	Constructor expecting the seed.

import HydraPython as hp

r = hp.Random() # default seed
r2 = hp.Random(8385977) # Seed value
This will construct the 2 Random class's object one with default seed and
one with the seed value 8385977

Apart from setting the seed value at the time of creation the seed can be
set or get with setter and getter methods named SetSeed and GetSeed.

r = hp.Random()
print (r.GetSeed()) # Give the seed value of object r. 7895123
r.SetSeed(988763) # New seed is 988763
print (r.GetSeed()) # 988763

The Random class provides a method named Uniform to generate the numbers
between range (min, max) (both min and max exclusive) and
fill them into the container according to the Continuous Uniform
distribution [https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)].
The container can be any of the host_vector_float or device_vector_float.
In below examples, I have used device_vector_float extensively but they both
can be used interchangeably in place of each other.

import HydraPython as hp

container = hp.device_vector_float(1000000) # Continer to hold 1000000 objects
r = hp.Random() # Random number generator object
r.Uniform(1.1, 1.5, container) # Minimum number 1.1, maximum 1.5 and container
Above will generate 1000000 numbers between (1.1, 1.5)

print (container[:10])

The Gauss random number generation method can also be used with the Random class.
The Gauss method generate the numbers with the given mean and sigma
values.

import HydraPython as hp

container = hp.device_vector_float(1000000) # Continer to hold 1000000 objects
r = hp.Random() # Random number generator object
r.Gauss(-2.0, 1.0, container)
Above will generate 1000000 with mean -2.0 and sigma as 1.0

The Exponential random number generation method or Exp method in Random class
generates the numbers with the given tau value of the Exponential distribution.

import HydraPython as hp

container = hp.host_vector_float(100) # Continer to hold 100 objects.
r = hp.Random() # Random number generator object
r.Exp(1.0, container) # tau is 1.0
print (container)

The Random class also provides a BreitWigner method to generate random number
according to a BreitWigner with mean and width.

import HydraPython as hp

container = hp.device_vector_float(10000) # Continer to hold 10000 objects.
r = hp.Random() # Random number generator object
r.BreitWigner(2.0, 0.2, container) # mean=2.0, width=0.2
print (container)

Apart from all these distributions, you can also define your own distribution
and pass it as a function to the method. The Sample method allows you to pass
a function that will be sampled for the given sampling range (lower, upper) and
store the result in the container.

import HydraPython as hp

The functon which will be sampled.
import math
def gauss1(*args):
 g = 1.0
 mean = -2.0
 sigma = 1.0
 for i in range(3):
 m2 = (args[i] - mean) * (args[i] - mean)
 s2 = sigma * sigma
 g *= math.e ** ((-m2/(2.0 * s2))/(math.sqrt(2.0*s2*math.pi)))
 return g

container = hp.host_vector_float3(10000) # Container with 10000 objects each having 3 floats
r = hp.Random() # Random object
r.Sample(d, [6, 6, 6], [-6, -6, -6], gauss1)
d is container, [6, 6, 6] is the start range (1 for each float in container),
[-6, -6, -6] is end range, gauss1 is the functor.

In sample method, the start range and end range should have the same number of
arguments as in the container. So for example, if you are using container of
float7 than start range and end range each should contain 7 elements.

Warning

Any of device containers will not work with Sample method.

The complete method list supported by Random class can be found on [1].

The container list that can be passed to Sample method can be found on [2].

	[1]	The method list for Random classes

	GetSeed Get the seed. Syntax:

	seed = r.GetSeed()

	SetSeed Set seed. Syntax:

	r.SetSeed(seed)

	Gauss Generate the Gauss distribution. Syntax:

	r.Gauss(mean, sigma, container) # container can be [device/host]_vector_float

	Uniform Generate the Continuous Uniform distribution. Syntax:

	r.Uniform(min, max, container) # container can be [device/host]_vector_float

	Exp Generate the Exponential distribution. Syntax:

	r.Exp(tau, container) # container can be [device/host]_vector_float

	BreitWigner Generate the BreitWigner distribution. Syntax:

	r.BreitWigner(mean, width, container) # container can be [device/host]_vector_float

	Sample sample the given function. Syntax:

	iterator_accepted_events = r.Sample(container, [min_values_list], [max_limit_list], function) # Container could be any of the container listed below

	[2]	The list of available containers to use with Random.

	host_vector_float host container with 1 float. Syntax:

	h_container1 = hp.host_vector_float(size)

	host_vector_float2 host container with 2 float. Syntax:

	h_container2 = hp.host_vector_float2(size)

	host_vector_float3 host container with 3 float. Syntax:

	h_container3 = hp.host_vector_float3(size)

	host_vector_float4 host container with 4 float. Syntax:

	h_container4 = hp.host_vector_float4(size)

	host_vector_float5 host container with 5 float. Syntax:

	h_container5 = hp.host_vector_float5(size)

	host_vector_float6 host container with 6 float. Syntax:

	h_container6 = hp.host_vector_float6(size)

	host_vector_float7 host container with 7 float. Syntax:

	h_container7 = hp.host_vector_float7(size)

	host_vector_float8 host container with 8 float. Syntax:

	h_container8 = hp.host_vector_float8(size)

	host_vector_float9 host container with 9 float. Syntax:

	h_container9 = hp.host_vector_float9(size)

	host_vector_float10 host container with 10 float. Syntax:

	h_container10 = hp.host_vector_float10(size)

	device_vector_float device container with 1 float. Syntax:

	d_container1 = hp.device_vector_float(size)

	device_vector_float2 device container with 2 float. Syntax:

	d_container2 = hp.device_vector_float2(size)

	device_vector_float3 device container with 3 float. Syntax:

	d_container3 = hp.device_vector_float3(size)

	device_vector_float4 device container with 4 float. Syntax:

	d_container4 = hp.device_vector_float4(size)

	device_vector_float5 device container with 5 float. Syntax:

	d_container5 = hp.device_vector_float5(size)

	device_vector_float6 device container with 6 float. Syntax:

	d_container6 = hp.device_vector_float6(size)

	device_vector_float7 device container with 7 float. Syntax:

	d_container7 = hp.device_vector_float7(size)

	device_vector_float8 device container with 8 float. Syntax:

	d_container8 = hp.device_vector_float8(size)

	device_vector_float9 device container with 9 float. Syntax:

	d_container9 = hp.device_vector_float9(size)

	device_vector_float10 device container with 10 float. Syntax:

	d_container10 = hp.device_vector_float10(size)

Phase Space Example

This page is basically to demonstrate, how the PhaseSpace class with N
particles can be used to generate the Events.

import HydraPython as hp

Above line will bring the classes in HydraPython in the scope of interpreter with
the alias hp.

I will be using the Generate method of PhaseSpace here.

ps = hp.PhaseSpace4([3.096916, 0.493677, 0.13957018, 0.0195018])

Above will create a PhaseSpace class object with N=4 number of particles in
the final state. Since the number HydraPython currently supports particles up-to
N=10 in the final state each PhaseSpace class have a suffix number from 1 to 10 is
associated with it. The argument to the PhaseSpace class constructor is
the list of daughter masses. The size of this list
should be equal to the number of particles in the final state.

Now that we have defined a PhaseSpace object, let’s create an Event container
to contain or save the states of the particle generated by the Generate method.

e_host = hp.host_events_4(3)

Above I have defined a host Event container with N=4 particle and number of
states as 3. So this container will contain the 3 states of 4 particles each
generated by the PhaseSpace.

Above will generate the events or states of N particles using host and save the
result in the passed e_host container.

Iterating over e_host will produce the output like this.

iterator = e_host.Events()
for state in iterator:
 print(state)

The output is similar to this.

(0.0005371556105645586, (3.26523953659142, 0.8636638960657156, 0.0039751958746361005, -0.5700608675519644), (0.5205929150762441, 0.1361899815237809, 0.005650876525868165, -0.09338286473236444), (0.20194244730558714, -0.1422365383415909, 0.02243309740186762, 0.023800003783548303), (1.0705417836594209, -0.8576173392479055, -0.03205916980237188, 0.6396437285007806))

(0.05958088064572496, (3.165087693874953, -0.03009443713313225, 0.6184073639056892, 0.2087056683071267), (0.5809611490129989, -0.016410682480807473, -0.054177669092790454, -0.30098894665035486), (0.7999891064682725, 0.08709929588193556, -0.6686502155923885, -0.40721411710277927), (0.5122787332764478, -0.04059417626799582, 0.10442052077948974, 0.4994973954460073))

(0.03738710351970522, (3.376147992537914, -0.4901521345374072, 1.085407051180553, 0.6238020316717038), (1.0297008095722722, 0.22021896692371404, -0.8251558826920553, -0.29527640063259364), (0.49365860519565796, 0.27558785182792184, -0.33498661390711465, -0.18987966654280578), (0.15880927532682793, -0.005654684214228855, 0.07473544541861718, -0.13864596449630434))

So what is this? It is the tuple of output in which the first element of tuple
represent the weight and the remaining number of elements are the Vector4R of
each particle for N particle. (In this case 4)

If you will closely follow the result, you will see that the each particle in
every event has the mass specified by the list of daughter masses at the time
of the creation of PhaseSpace.

state1 = e_host[0] # first state particle
d_particle0, d_particle1, d_particle2, d_particle3 = state1[1], state1[2], state1[3], state1[4]

d_particle0 = hp.Vector4R(d_particle0)
d_particle1 = hp.Vector4R(d_particle1)
d_particle2 = hp.Vector4R(d_particle2)
d_particle3 = hp.Vector4R(d_particle3)

print(d_particle0.mass(), d_particle1.mass(), d_particle2.mass(), d_particle3.mass(), sep=', ')

Output is
3.096916, 0.493677, 0.13957017999999996, 0.01950179999999231
This is exactly the weight given for each daughter while creation of PhaseSpace
Same thing is true for rest of the states.

So this is a simple PhaseSpace example of 4 particles in the final state.
For the sake of completeness, all the code showed in the doc is below.

import HydraPython as hp

mother_particle = hp.Vector4R(5.2795, 0.83859, 0.77825, 0.98876)
daughter_masses = [3.096916, 0.493677, 0.13957018, 0.0195018]
print("Daughter masses at the time of creation of PhaseSpace:", daughter_masses)
print()

ps = hp.PhaseSpace4(daughter_masses)
e_host = hp.host_events_4(3)
ps.Generatehost(mother_particle, e_host)

iterator = e_host.Events()
for idx, state in enumerate(iterator):
 print("State", idx, ": ", state)

state1 = e_host[0] # first state particle
d_particle0, d_particle1, d_particle2, d_particle3 = state1[1], state1[2], state1[3], state1[4]

d_particle0 = hp.Vector4R(d_particle0)
d_particle1 = hp.Vector4R(d_particle1)
d_particle2 = hp.Vector4R(d_particle2)
d_particle3 = hp.Vector4R(d_particle3)

print('\nDaughter masses:', d_particle0.mass(), d_particle1.mass(), d_particle2.mass(), d_particle3.mass(), sep=', ')

Index

Project Report:

Google Summer of Code 2017

Umbrella Organization: CERN-HSF, CERN’s HEP software foundation

Project: Efficient Python routines for analysis on massively multi-threaded platforms-Python bindings for the Hydra C++ library

Submitted by- Deepanshu Thakur

I spent my last 3 months working on a GSoC project [https://summerofcode.withgoogle.com/projects/#6669304945704960]. My GSoC project was
related with writing the bindings of the Hydra C++ library. Hydra is a header-only
C++ library designed and used to run on Linux platforms. Hydra is a
templated C++11 library designed to perform common High Energy Physics data
analysis on massively parallel platforms. The idea of this GSoC project was to
provide the Python bindings for the Hydra library, so that the Python support
can be added to the overall Hydra project and Python can be used for the prototyping or
development.

My original proposal deliverables and final output ended up looking a little bit
different, and there are some very good reasons for it. The change of
deliverables will become evident in the discussion of the design challenges
and choices later in the report. In the beginning the goal was to write the
bindings for the Data Fitting, Random Number Generation,
Phase-Space Monte Carlo Simulation, Functor Arithmetic and
Numerical integration, but we ended up having the bindings for
Random Number Generation and Phase-Space Monte Carlo Simulation only.
(The remaining classes can be binded with some extra effort but we do
not have time left under the current scope of GSoC, so I have decided to
continue with the project outside the scope of GSoC given my interest in the project.)

Choosing the proper tools

Let me take you though my three-month journey. First step was to find a tool or
package to write the bindings with. Several options were in principle available to
write the bindings. For example, at the beginning we tried to evaluate the
SWIG [http://swig.org] project.
But the problem with SWIG is, it is very complicated to use and second it
does not support the variadic templates while Hydra underlying
Thrust library [https://github.com/andrewcorrigan/thrust-multi-permutation-iterator] depends heavily on variadic templates. After trying hands
with SWIG and realizing it cannot fulfill our requirements, we turned our
attention to Boost.Python [http://www.boost.org/doc/libs/1_65_0/libs/python/doc/html/index.html], which looked quite promising. It is a very large
project; but this large and complex suite project has so many tweaks and
hacks so that it can work on almost any compiler. It does add much
complexity and cost. Finally, we turned our attention to the newer pybind11 [https://github.com/pybind/pybind11] project.
A quote taken from the pybind11 documentation,

Boost is an enormously large and complex suite of utility libraries
that works with almost every C++ compiler in existence. This compatibility
has its cost: arcane template tricks and workarounds are necessary to
support the oldest and buggiest of compiler specimens. Now
that C++11-compatible compilers are widely available, this heavy
machinery has become an excessively large and unnecessary dependency.

After investigating a lot of things and trying various programs [https://github.com/Deepanshu2017/boost.python_practise] we decided
to go ahead with pybind11. Next step was to familiarize myself [https://github.com/Deepanshu2017/pybind11_practise] with pybind11.

The Basic design problem

The basic design problem is the CRTP idiom [https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern].
The Hydra library relies on the CRTP idiom to avoid runtime overhead. I
investigated a lot about CRTP and it took a little while to finally come up
with a solution that can work with any number of final-state particles (denoted N) often used in Hydra applications.
If you know about CRTP, it is a type of static polymorphism, or compile-time polymorphism. The
idea that I implemented was to take a parameter from Python and, based on that
parameter, I was writing the bindings in a new file, compiling and generating
them on runtime with system calls. Unfortunately, generating bindings at
runtime and compiling them would take a lot of time and so, it is not
feasible for a user to each time wait for a few minutes before actually being
able to use the generated package from Python. We decided to go ahead with a fixed number
of values of N. It means we generate the bindings for a limited number of particles.
Currently the Python bindings for the Hydra classes support up to 10 (N = 10) number of
particles in the final state. Note that we can make that to work with any number we want,
as our binding code is written within a macro, so it is just a matter of
writing additional and trivial-to-add extra calls to make the bindings work for extra values of N.

The Hydra bindings

Now that the approach was decided, we jumped into the bindings of Hydra.
(Finally after so many complications but unfortunately this was not the
end of them.) We decided to bind the most important classes first,
Random Number Generation and Phase-Space Monte Carlo Simulation.
My mentors decided that they will bind the Random Number Generation while
Phase-Space Monte Carlo Simulation was my responsibility. Rest of the
report will explain more about Phase-Space Monte Carlo Simulation.

“Phase-Space Monte Carlo Simulation” or PhaseSpace C++ Hydra class is useful
to generate the phase space monte carlo simulation.

The events are generated in the center-of-mass frame, but the decay products
are finally boosted using the betas of the original particle. The code is
based on the Raubold and Lynch method as documentd in
[F. James, Monte Carlo Phase Space, CERN 68-15 (1968)]
(https://cds.cern/ch/record/275743).

The momentum and energy units are GeV/c and GeV/c^2, respectively. The PhaseSpace Monte
Carlo class depends on the Vector3R, Vector4R and Events classes.
Thus PhaseSpace class cannot be binded before without any of the above classes.

The Vector3R and Vector4R classes were binded. There were some problems
like generating __eq__ and __nq__ methods for the Python side but I solved
them by creating lambda functions and iterating over values and checking
if they satisfy the conditions or not. The Vector4R or four-vector class
represents a particle. The idea is I first bound the particles class
(the four-vector class) than I had to bind the Events class that will
hold the Phase Space events generated by the PhaseSpace class, and then bind the
actual PhaseSpace class. The Events class were not so easy to bind
because they were dependent on the hydra::multiarray and without their
bindings, the Events class was impossible to bind. Thanks to my mentors
who had already binded these bindings for Random class with some tweaks on
the pybind11’s bind_container itself. We even faced some design issues of
Events class in Hydra itself. But eventually after solving these problems,
I now had Events class working and I therefore converted the binding code
into a macro, so that we can use Events class with up-to 10 particles.

Now came the actual bindings for the PhaseSpace class. The PhaseSpace
class have constructors and methods like GetSeed, SetSeed, AverageOn, Evaluate and Generate.

The GetSeed and SetSeed were easy to implement. The remaining 3 methods
have two version, one which accept single mother particle and one which accept
a list of mother particle. I got the success of bindings methods which accept
the single mother particle but was unable to bind the methods that accepts
the list of mother particles. I was trying to pass the list of events object
along with the list of mother particles. I was successfully able to pass the
list of mother particles but wasn’t getting any way to pass the list of Events
without casting each Event object from python object in my bindings code.
(Later I realized that is impossible to do) My mentor wrote the bindings for
methods that accept the list of mother particles. After looking at binding
code I realized. Alas! I was making a very stupid mistake. I had to pass the
single Events object, not the list of Events object which I already did
but never showed to my mentor, thought I’m making a mistake. Well learned a
lesson from this, always show your mentor what you did, even though if you
believe you are wrong. Maybe it could save some of your time. ;)

After completing the PhaseSpace code, I quickly converted the code into macro
for supporting up-to 10 particles.

Now the PhaseSpace class was working perfectly! Next step was to create a
series of test cases, documentation, and of-course the example of
PhaseSpace class in action. The remaining algorithms that I named at the
start of the article are left to implement. You can find check list
of my commits [https://github.com/MultithreadCorner/Hydra.Python/commits/GSoC2017-release?author=Deepanshu2017]. I would also like to continue to the Hydra.Python project
outside the scope of Google Summer of Code.

The happy learning

GSoC 2017 was a really very learning experience for me. I learned a lot of
things not only related with programming but related with high energy physics.
I learned about Monte Carlo Simulations, and how they can be used to solve
challenging real life problems. I read and studied a research paper
(https://cds.cern.ch/record/275743/files/CERN-68-15.pdf), learned about
particle decays, learned the insights of C++ variadic templates,
wrote a blog about CRTP [https://medium.com/@deepanshu2017/a-curiously-recurring-python-d3a441a58174], learned how to compile a
Python function and why simple Python functions cannot be used in
multithreaded environments. Most importantly I learned how to structure
a project from scratch, how important documentation and test cases are.

Special thanks

Shoutout to my amazing mentors. I would like to thank
Dr. Antonio Augusto Alves Jr. [https://github.com/AAAlvesJr] and Dr. Eduardo Rodrigues [http://erodrigu.web.cern.ch/erodrigu/] for being awesome
mentors and for all the time they invested in me during GSoC. I also would
like to thank the CERN-HSF community for their time and helping me whenever I
had a problem. Thank you!

 _static/hydra_mini_logo.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Hydra.Python — Python bindings for the Hydra C++ library

 		About this project

 		Core features

 		Supported compilers

 		History

 		First steps

 		Quick start

 		Creating a simple Lorentz vector and calculating the particle's mass

 		Vector Classes

 		Vector4R

 		Vector3R

 		Events Class

 		Host

 		Device

 		PhaseSpace Class

 		Random Class

 		Phase Space Example

_static/hydra_logo.png
N HYDRA
.- Multithreaded Data
B Analysis Framework

_static/up.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

